2025 Spring - Circuits - Final

1. (15 pts) For the circuit below, g, = 1 mS and R, = 1 kQ. Please obtain:
(@) (10 pts) the matrix mesh equation for 71 and iou:.

(b) (5 pts) current gain iou / iin.
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Loopl : —12(i; — ip,) — 3i; — 59mVin + 5iour — iin) =0 (2pts)
Loop2: —5(ipus = i1) + 5gmVin — loue =0 (2pts)

Vin = 12(iip — i) (2pts)

ImVin 1t ALoop1, Loop2

Loopl = 40i; + 5iyy = 48i;;,, (Ipts)

Loop2 = 55i; + 6i,y: = 60i;,, (Ipts)
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2. (7 pts) For the circuit below with load Zi, find the following:

(@) (4 pts) the load impedance Zyr as a complex number for maximum average
power transfer to the load

(b) (3 pts) the value of the maximum average power absorbed by the load
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3. (8 pts) The circuit below operates at 50 Hz and is in steady state. The phasor value
is the RMS (not magnitude). The load is a motor with the shown equivalent
impedance. Find the following:

(@) (2 pts) real power of the load, P

(b) (2 pts) reactive power of the load, Q

(c) (2 pts) power factor of the load, PF

(d) (2pts) value of the capacitor C that, when put in parallel with the load,
makes the supply power factor become unity (PF=1.0)

Is

Vs =100 20" Vi 5 Motor
50 Hz i Load

Solution

(@) Z=1+j1=141 ~ 45°Q
[=V/Z=100 ~ 0°/1.41 ~ 45°=70.7 ~ -45°A
P =V I cos(¢p) = 100 * 70.7 cos(45°) = 4,999.2 W (2 pts)

(b) Q =V I sin(¢) = 100 * 70.7 sin(45°) = 4,999.2 VAR (2 pts)

(¢) PF=rcos(¢) =cos(45°) =0.707 (2 pts)

(d) Zc =+ 1/2xntC) = 1/(100nC) ~« -90° Q=0.00318/C £ -90° Q
Ic=V/Zc=100 ~ 0°/0.00318/C ~ -90°=31,416C ~ 90°A
Qc =V I sin(¢) = 100 * 31,416 C sin(-90°) = -3,141,600 C
C=Qc/-3,141,600 = -4,999.2 / -3,141,600 = 0.001591 F = 1.591 mF (2 pts)



(@) (8 pts) You are asked to design a second-order bandpass filter with peak
gain of one and passing frequency in the range of 2 kHz + 100 Hz (i.e., fi =
1.9 kHz and f,, = 2.1 kHz). Write down the transfer function Hp,(s) of this
filter and the corresponding pole locations. Sketch the frequency response
curves (amplitude and phase) for Hy,(s) and specify the amplitude a(f) and
phase &) at: f'= 0+, 11, fo, fu, ©.

(b) (4 pts) Design a first-order high pass filter with peak gain of one and cutoff
frequency fco = 1.9 kHz, and a first-order low pass filter with peak gain of
one and cutoff frequency f., = 2.1 kHz Write down the corresponding
transfer functions Hy,(s) and Hi(s).

(c) (3 pts) One engineer tries to combine the high pass and low pass filters you
designed in (b) to implement the second-order bandpass filter you need in
(a). Would it work? Why or why not?

Solution
4(a)
For f; =19k Hz, f, = 2.1k Hz, f, = 2k Hz

The second order transfer function is given by:

H, () Ks
b S =
P s2+ %s + w3
Where w, = 2nf, = 12566.4 (rad/s),
Wy 2000*21

. . _@o _ _ _
Q 1is the quality factor, defined as Q = B = oua; — (2100-1900)2 pi

For peak gain=1,at f = f,, K = % = 1256.64

So the transfer function becomes:

1256.64s
s?2 4+ 1256.64s + 12566.42

pr(S) =

Pole locations :
s% 4+ 1256.64s + 12566.4%2 = 0
= s = —628.32 +j12550.7



Bode Diagram

Magnitude (dB)

Phase (degrees)

Frequency (rad/s
f 0 f fo fu %
a(f) 0 -3dB 1 -3dB 0
o(f) 90° 45° 0° —45° —90°
4(b)
First order high-pass filter with unity gain is:
s S

H = = =
m(S) = T T ¥ 2m 19k 5+ 11938

First order low-pass filter with unity gain is:
Wy 2r - 2.1k 13195

H = = =
) = o =S¥ 2 21k 5+ 13195

4(c) It doesn’t work.

In part (a), we carefully scaled the filter to get unity gain at f,. In the cascaded filter
as (b), the gain at f;, is less than 1, and varies depending on the specific cutoff
frequencies of the HPF and LPF.

Hence, this cascade filter does not match the desired filter in part (a).



SO

4(a). Hpp(s) BT 3 97> RUIQ, K& 147 -

Poles BE¥f 147 -

Bode plot 2 43 (Amplitude, Phase % 1 47), Ff& 2 47(Amplitude, Phase % 1

53) o
$ 8 57 -

4(b). Hpp(s) B¥HF 257 > Hyp(s) BEE 257 > $k4 57 -

4(c). FEBEHEGE 357 HE No

5. (9pts) F(s) is the Laplace transform of f(t). Given F(s) = ;

—-353+2
52+1)(s2+6s+5)

and

f(07) =-3. Evaluate (a) f(0"); (b) f'(07); (c) f (). Be sure to show the detailed
steps taken to obtain the answer.

Solution

Method 1

1. Given the Laplace transform

—3s5342 —3s5342

F(s) = (s2+1)(s2+65+5)  (s2+1)(s+1)(s+5)
As + B C D

F(s) = ( > ) +
(s2+1) (s+1) (s+5)

getA=0,B=1/2,

C=58, D=-298.

29

Inverse Laplace: f(t) = %sin t + ge_t - Ee_St t>0.

F@O")=-3
' (0") = 18.
The undamped sin t*

term prevents convergence = f() is undefined.

1)

()

(2)
(2)
)



Method 2: Initial and Final VValue Theorems

Given:

1.

Initial Value Theorem
f(0+) =;1_)r£10 sF(s)
f(0+) = -3, 3)
Initial Derivative
If you also need the slope at t=0+t=0+, use the property
1(0+) = ;i_)n;) [s?F(s)—s f(0+)]
Substituting f(0+)=—3 and F(s) get
£(0+) = 18, (3)
Final Value Theorem
f(e0) = lim sF(s)
F(s) has poles on the imaginary axis (specifically at s=+jo ° the roots
of s2+1=0), so this limit does not exist.

En& sF(s) diverges because of poles at s=tjw, f(o) is undefined. (3)



6. (12 pts) An s-domain circuit diagram yields the transfer function H(s) = Y(s)/X(s).
Find the zero-state response y(¢) when input x(¢) is as shown in the figure below.

1052+300s
(s+10)(s2-100) x(7)
)

H(s) =

1 -------------------------- ———

Solution

10s3+300s

Transfer function: H(s) = (52-100)(5110)

Input waveform: x(t) =2 u(t — 1) —u(t — 3). (2)
Laplace transform:

2e S—e”

X(s) =—— (2)

10s(s + 30)
(s+10)2(s — 10)

H(s) =

10(s+30)
(s+10)2(s — 10)

2e75 —e735 G(s)

Define  G(s) = Then Y(s) =X(9H(S) = 2= H(s) =

A B C

G(s) = 10 T Gito) T Grioz =>A=1,B=-1,C=-10.
g(t) =el0t-e~10t.10 te~10t  t>0. (2)
y®) =2g(t—Dut—1)—g(t—3) ut—3). (3)

y(t) — 2[810(t_1)-€_10(t_1)-10 (t _ 1)e"10(t_1)]u(t _ 1) _ [610(t—3)_e—10(t—3)_10
(t — 3)e~10(=3)] y(t - 3). (3)



7. (34 pts) Consider the dynamic circuit below. The time function of the voltage

20V t<O

8tV t>0 Use the Laplace transform method to analyze

source is v(t) = {

the circuit.

(@) (14 pts) Construct and plot the s-domain circuit diagram for t > 0.

(b) (10 pts) Calculate Vc(s), Laplace transform of v, (t), and /1(s), Laplace
transform of i; (t), from the s-domain circuit diagram for t > 0.

(c) (10 pts) Apply partial fraction expansion and inverse Laplace transform to

determine ve(f) and i (t) for ¢ > 0. If the response contains certain sinusoidal

function, be sure to express it as the standard-form cosine function
A cos(Bt + ¢).

Solution

20V, t <0
vs(t) = {ae—tv £>0

N l N
8Q 2 Q
Vg + -
1
O T_ 24
(Fig. 2)

(a) Whent > 0

(2%) v,(t) = 8e ™V - V(s) = —

s+
(2%) vc(07) = 4V
iy
5 5

40 1
F/] ;A

5

(2%) s — domain of C:

(2%) i,(07) = 24

2sH + 4V
2sH//>A
9

(2%) s —domain of L: {



s-domain Thevenin Model s-domain Norton Model
Bﬂw J_ AR Bnm Sa YV
25 25H 40 25H
. . Z I - B8 s G)l ()2
s+1 v -|- 4V—|— s+1 | 04 e
(4%)
(b)
(40/( ) VC{S:}_;;:L V(;(S}_E Ve(s)+4 -0 {B i KC‘L)
0 40 2542 Y
g
45-36
30 — _man
(3%) Ve(s) s2+65+25
45-36
T4 252+14s+32

30 __ 52465425 _
(3%) I.(s) 25+2 (s+1)(s2+65+25)
(c)

45-36 4(s+3)-12-4
0 — =
(2%) Ve(s) s2+65+25 (s+3)2+42

(3%) vo(t) = 4e 3'cos 4t — 12e 3'sin 4t

Q%) I,(s) =

= 4/10e 3cos(4t + 71.57°)

5+7

1

(s+3)+4

s+1

s24+65+25 s+1  (s+3)2+42

(3%) i (t) = et + e 3tcos4t — e 3tsin 4t

= et +2e 3cos(4t — 45°)

10



TABLE 13.1 Laplace Transform Properties

Operation

Time Function

Laplace Transform

Linear combination

Af(r) + Be(s)

AF(s) + BG(s)

Multiplication by ¢~ FGs+ a)
Multiplication by ¢ —dF ()] ds
Time delay fle = tg)ule — £5) e FOF(s)
Differentiation sF(s) — £(07)
2 F(s) — sf(07) — £(07)
Integration l F(s)
$
TABLE 13.2 Laplace Transform Pairs
f(@) F(s)
J A
5
1 — D
u(t) — u(r — D) se
1
’ §
, rl
t 5r+l
. 1
e
s+ a
r —at 1
‘ (s + 2
PPl rt
¢ (5 + d)r+1
. B
sin Bt e
scos ¢ — Bsin ¢
cos (Bt + o) "

e “cos (Br+ ¢)

(s + @) cos p — Bsin P
(s + 2)? + B




